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The stabilization method is used in conjunction with Koopmans-based approximation to calculate the energies
of π* temporary anion states of a series of substituted benzenes in density functional theory. In this approach,
the Koopmans expression is corrected due to the consideration of the integer discontinuities in the exact
exchange-correlation potential. Stabilization is accomplished by varying the exponents of appropriate diffuse
functions. The energies of π* states are then identified by investigating the relationship between the resultant
eigenvalues and scale parameter. Results indicate that this approach can yield an improvement in the predictions
of the absolute energies of π* states over other methods.

1. Introduction

The temporary or metastable anion state1 plays an important
role in the study of electron-molecule collision processes. It
is also important in the study of chemical properties such as
chemical reactivity, hardness, softness, electronegativity, non-
linear optical activity, and the electronic couplings responsible
for the high rates of electron transfer in donor-bridge-acceptor
compounds.2-9 The temporary anion can be observed as a sharp
resonance in the electron scattering cross section by electron
transmission spectroscopy (ETS).10,11 The resonance phenom-
enon, which occurs when an incident particle has the right
energy to be trapped by the target-particle potential, can be
regarded as a discrete state embedded in a continuum. Since
the temporary anion state lies energetically above the ground
state of the neutral molecule, its electron affinity (EA) is
negative.

The determination of negative EA is a challenging problem
for theoretical methods, since the anion is unstable with respect
to electron detachment. Any variational methods are likely to
fail due to “variational collapse” to the neutral molecule plus a
free electron for temporary anion states. In many applications,
the EAs are computed via Koopmans’ theorem (KT)12 using
Kohn-Sham orbital energies. The EA is associated with the
negative of the unoccupied molecular orbital energy. However,
there is a special difficulty when using the density functional
theory (DFT)13 method as far as anions are concerned.1,14 The
KT approximation often underestimates the exact EAs due to a
fundamental deficiency in the potentials of conventional con-
tinuum functional.

Recently, Tozer and co-workers have studied temporary
anions in DFT via an alternative Koopmans-based (KB)
approximation.14-19 A simple correction to the Koopmans
expression is highlighted on the basis of a consideration of the
integer discontinuity (∆xc) in the exact exchange-correlation
potential. The correction of the Koopmans value is ap-
proximately half the integer discontinuity

∆xc

2
≈ εHOMO + IP (1)

where

IP)EN-1 -EN (2)

Here, εHOMO is the highest-occupied molecular orbital (HOMO)
energy determined from a DFT calculation using a local
exchange-correlation functional on the neutral system. IP is the
vertical ionization potential of the neutral, and EN and EN-1 are
the total electronic energies of the neutral and cation, respec-
tively. The correction ∆xc/2 can eliminate the underestimation
of the Koopmans expression for EAs. The applications by Tozer
et al. have been shown to give improvement over other
approaches for systems with large negative EAs. However, their
studies are mainly for electron capture into the lowest unoc-
cupied molecular orbital (LUMO) of a neutral, ground-state
system.

For temporary anion states, the KT approximation may not
generate definitive energies by adopting a basis set with more
diffuse functions in finite basis set calculations. This is because
the temporary anion states are prone to collapse onto continuum
solutions, called orthogonalized discrete continuum (ODC)20-23

solutions. The stabilization method proposed by Taylor and
co-workers24-27 can allow one to distinguish the temporary anion
orbital solutions from the ODC solutions. Their method has been
employed in conjunction with KT. The vertical attachment
energies (AEs) are associated with the energies of the “stabi-
lized” temporary anion states of the neutral molecules. The
stabilized Koopmans’ theorem (SKT) method (i.e., the stabiliza-
tion method coupled with KT) has been much more successful
than KT alone in predicting relative energies of temporary anion
states.28-30

So far, the stability of the resonance energies has not been
systematically examined by using the DFT method. We notice
that the SKT method is successful in predicting relative energies
of higher virtual orbits. In addition, the KB approach differs
from KT only by a correction term, ∆xc/2. Hence, it is vital to
couple the aforementioned alternative KB approximation and
the stabilization method via DFT method to study the temporary
anion states. In the past, we have studied the π* temporary anion
states of benzene, fluorobenzene, phenol, and pyridine using
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the stabilization method in conjunction with the XR method28

and KT approximation.29 In this study, it is fitting for us to study
a series of substituted benzenes via the stabilization method in
conjunction with an alternative KB approximation (S-KB) in
DFT. Finally, the results obtained from both S-KB and KT
approaches will be compared.

2. Computational Method

When the alternative KB approximation is applied to the π*
temporary anion states of the series of substituted benzenes,
the electron affinity is expressed as

EA ≈-εVMO -
∆xc

2
(3)

where εVMO denotes the Kohn-Sham one-electron eigenvalue
associated with the π* virtual molecular orbital (VMO). It
follows from eq 1 that

EA ≈-(εVMO + εHOMO + IP) (4)

Notice that eq 4 was derived in ref 14 using εLUMO instead of
εVMO. The vertical attachment energy, i.e. the negative of EA,
can then be represented as

AE ≈ εVMO + εHOMO + IP (5)

The virtual orbital energy associated with the temporary anion
state is also known as AE. The AE obtained from KB approach
in eq 5 will be denoted as εVMO

KB .
In this study, the stabilization method is employed to

distinguish the π* orbital solutions from the virtual ODC
solutions. Three different Gaussian-type basis sets are employed
for our calculations. (1) The 6-31+G(d)+Rp1 basis set is formed
by augmenting the 6-31+G(d) basis set with the diffuse p1

function multiplied by a scale factor, R (denoted by Rpl), on
the C, N, O, and F atoms. The p1 functions have the exponents
of 0.0146, 0.0213, 0.02817, and 0.03587 for the C, N, O, and
F atoms, respectively. (2) The 6-31+G(d)+R(p1,p2) basis set is
formed by augmenting the 6-31+G(d)+Rp1 basis set with the

Rp2 diffuse function. The p2 functions have the exponents of
0.00487, 0.0071, 0.00939, and 0.01196 for the C, N, O, and F
atoms, respectively. (3) The aug-cc-pvdz+Rp3 basis set is
formed by augmenting the aug-cc-pvdz basis set with the Rp3

diffuse function. The p3 functions have the exponents of
0.01347, 0.01870, 0.02285, and 0.02834 for the C, N, O, and F
atoms, respectively. The inclusion of additional diffuse s
functions or d polarization functions is found to be unimportant
for the energies of π* orbitals. As R increases, the ODC

Figure 1. Energies of e2u and b2g virtual orbitals of benzene as a
function of the scaling factor R for a free electron in the absence of
potentials using 6-31+G(d)+Rp1 basis set.

Figure 2. Stabilization graphs for benzene. Energies of (a) e2u and
(b) b2g virtual orbitals (represented by the solid curves) and the free
electron (represented by the dashed curves) as a function of R using
the 6-31+G(d)+Rp1 basis set. The location of Rac is marked with ×.
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solutions may approach the π* orbital solutions in energy and
lead to avoided crossing between the two types of solutions.

The stabilization graphs are obtained by plotting the calculated
energies (εVMO

KB ) as a function of the scale factor R. The energy

of the stabilized π* orbital is taken as the mean value of the
two eigenvalues involved in the avoided crossing at their point
of closest approach, Rac, if the avoided crossing occurs between
temporary anion and ODC solution.31,32

In this paper, we will first use the mostly used B3LYP hybrid
method involving the three-parameter Becke exchange func-
tional33 and a Lee-Yang-Parr correlation functional.34 It
combines a generalized gradient approximation (GGA) term
with a fraction of orbital exchange. Then, the PBEPBE method35

using pure GGA functional as in the works of Tozer and co-
workers is also employed. All calculations are performed using
the Gaussian 03 program.36 The geometries used for the

Figure 3. Plots of the first three b2g virtual orbitals for benzene at (a)
R ) 1.0 and (b) R ) 5.0. The isosurface values chosen for all the MO
plots are 0.02 except for the first b2gvirtual orbital that is 0.01 at R )
1.0. These values are chosen so that surface building will not be out of
range.

Figure 4. Energies of bl virtual orbitals of fluorobenzene as a function
of R for a free electron in the absence of potentials using the
6-31+G(d)+Rp1 basis set.

Figure 5. Stabilization graphs for fluorobenzene. Energies of (a) a2

and (b) b1 virtual orbitals as a function of R using the 6-31+G(d)+Rp1

basis set. The locations of Rac are marked with ×.
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calculations are taken from experiment.37-40 An exception is
the HOC angle of phenol, which is taken to be 180° to allow
the calculations to exploit C2V symmetry. Our symmetry in the
labeling of the orbitals is based on the z axis that is perpendicular
to the plane of molecules.

3. Results and Discussion

Figure 1 shows the energies of the discrete continuum
(DC)20-23 solutions as a function of scale factor R for the e2u

and b2g virtual orbitals of benzene using the 6-31+G(d)+Rp1

basis set. The energies of the DC solutions are obtained by
solving the Kohn-Sham equation for a free electron in the
absence of any potential. With this basis set, there are two e2u

and two b2g DC solutions that lie below 15.0 eV for 1 < R <
5.0.

We perform S-KB calculations on the π* orbitals to distin-
guish them from the ODC solutions. The stabilization graphs
of the energies as a function of R for the e2u and b2g virtual
states of benzene and the free electron using the 6-31+G(d)+Rp1

basis set are shown in Figure 2, parts a and b, respectively.
There are two types of energies for π* virtual orbitals in the
S-KB calculations. One is the π* orbital solution and the other
the ODC virtual orbital solution. The π* orbital solution and
the ODC solutions are readily distinguished by examining how
their energies vary with R. As shown in Figure 2a, the first
solution that remains stabilized with R is the e2u π* orbital
solution, and the stabilized energy value is 1.84 eV. The next
two solutions that are appreciably higher in energies than the
resonance solution correspond to the ODC solutions. In general,
the energies of ODC lie below that of the DC.

For the b2g virtual states of benzene in Figure 2b, the third
solution that increases with increasing R is the ODC solution.
The first and second solutions undergo an avoided crossing at
Rac. The energy of the b2g π* orbital is 5.78 eV at Rac ) 2.3.
The nature of the first and second solutions can be examined
as follows. Just to the left of the avoided crossing (R < 2.3),
the first solution that contains predominantly extra diffuse
function character is from the ODC solution, while the second
solution that contains largely π* orbital character is from the
π* orbital. On the other hand, to the right of the avoided crossing
(R > 2.3), the first solution is from the π* orbital, while the
second solution is from the ODC solution. To illustrate the
aforementioned observation, three b2g virtual orbitals for R )
1.0 (<Rac) and R ) 5.0 (>Rac) are displayed. Notice that the
first virtual orbitals are all similar to each other for R > Rac.
Here, the value R ) 5.0 can be arbitrarily chosen as long as it
is greater than Rac. As shown in Figure 3a, the second virtual
orbital of R ) 1.0 corresponds to π* orbital. Two other virtual
orbitals correspond to ODC solutions. Similarly in Figure 3b,
the first virtual orbital of R ) 5.0 is also from π* orbital and it
resembles the second virtual orbital in Figure 3a.

Figure 4 shows the energies of the DC solutions as a function
of scale factor R for the bl virtual orbitals of fluorobenzene using
the 6-31+G(d)+Rp1 basis set. For energies smaller than 10.0
eV and R smaller than 3.0, the fifth, sixth, and seventh DC
solutions are coupled with each other. The avoided crossings
resulting from the couplings between the fifth and sixth DC
solutions and between the sixth and seventh DC solutions are
located at Rac(5,6) ) 1.2 and Rac(6,7) ) 2.0, respectively.

The stabilization graphs of energies for the a2 and bl π* virtual
orbitals of fluorobenzene using the 6-31+G(d)+Rp1 basis set
are shown in Figure 5, parts a and b, respectively. By examining
the energies, as indicated in Figure 5a, the first solution that
remains almost constant is the first a2 π* (denoted as 2a2) orbital
solution, and the obtained stabilized energy value is 1.81 eV.
The next two solutions having appreciably higher energies than
the 2a2 correspond to the ODC solutions. Similarly, the first
solution in Figure 5b that remains almost constant is the first
b1 π* (denoted as 4b1) orbital solution, and the stabilized energy
value of the 4b1 orbital is 1.50 eV. As illustrated in Figure 5b,
the second, third, and fourth solutions, which increase with
increasing R, are the first, second, and third ODC solutions.
Four avoided crossings regions are found in Figure 5b. They
are from the couplings between the fifth and sixth solutions,
the sixth and seventh solutions, the seventh and eighth solutions,
and the eighth and ninth solutions. The locations of them are at
Rac(5,6) ) 2.4, Rac(6,7) ) 1.4, Rac(7,8) ) 1.3, and Rac(8,9) )
1.6, respectively. The nature of the fifth to ninth solutions is
examined as follows. As an example, Figure 6 displays the fifth,
sixth, and seventh b1 virtual orbitals of fluorobenzene for R )
2.0. As indicated in this figure, the sixth b1 virtual orbital is
from the second b1 π* (denoted as 5b1) orbital, and the other
two virtual orbitals containing extra diffuse function character
are from ODC solutions. On the basis of Figures 4 and 5b and
the analysis of the nature of virtual orbitals, the eighth solution
for R < 1.3, the sixth solution for 1.4 < R < 2.4, and the fifth
solution for R > 2.4 are mainly from the 5b1 π* orbital solution.
The fifth solution for R < 2.4 and the sixth solution for R >
2.4 are from the fourth ODC solution. The sixth solution for R
< 1.4 and the seventh solution for R > 1.4 correspond to the
fifth ODC solution. The seventh solution for R < 1.3 and the
eighth solution for R > 1.3 are from the sixth ODC solution.
Finally, the ninth solution is from the seventh ODC solution.
The energies of the π* orbital can be extracted from each

Figure 6. Plots of the fifth, sixth, and seventh b1 virtual orbitals at R
) 2.0 for fluorobenzene. The isosurface values are chosen to be 0.02
for all the MO plots. These values are chosen so that surface building
will not be out of range.
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avoided crossing region. The energy values obtained from the
avoided crossings are 5.74 eV at Rac(5,6), 5.72 eV at Rac(6,7),
5.95 eV at Rac(7,8), and 6.69 eV at Rac(8,9), respectively.
According to the aforementioned observation, only the avoided

crossings at Rac(5,6), Rac(6,7), and Rac(7,8) are due to the
coupling between 5b1 π* orbital and the fourth, fifth, and sixth
ODC solutions. On the other hand, the avoided crossing at
Rac(8,9) is due to the coupling between the sixth and seventh
ODC solutions.41 Therefore, it is important to exclude the result
obtained from Rac(8,9). The lowest value from each set of energy
values will be defined as the energy of the π* orbital.29 Thus,
the energy of the 5bl orbital is 5.72 eV.

The stabilization graphs of energies for both phenol and
pyridine are similar to those of fluorobenzene. As to the S-KB/
6-31+G+Rp1 calculations on phenol, the stabilized energy
values of 2a2 and 4b1 orbitals are 1.82 and 2.12 eV, respectively.
The avoided crossings at Rac ) 1.6 and 2.4 are due to the
coupling between the 5bl orbital solution and ODC solutions.
The energy values of 5bl orbital are 6.32 eV at Rac ) 2.4 and
6.26 eV at Rac ) 1.6. Accordingly, the energy of the 5bl orbital
is 6.26 eV. For the S-KB/6-31+G+Rp1 calculations on pyridine,
the stabilized energy values of 2a2 and 3b1 orbitals are 1.81
and 1.46 eV, respectively. The energy values of 4bl orbital
obtained are 5.78 eV at Rac ) 1.0 and 5.71 eV at Rac ) 1.6.
Therefore, the energy of the 4bl orbital is 5.71 eV.42 Notice
that the avoided crossings will not be observed in the stabiliza-
tion graphs for the 2E2u π* state of benzene, 2A2, and the first
2B1 π* states of the substituted benzenes when more diffuse p
functions are added.43

The results of various S-KB and KT calculations of AEs are
summarized in Tables 1 and 2, respectively. To compare with
experimental results, “corrected” AEs are also included in the
tables. The corrected values are obtained by subtracting the
amount b from the calculated AE values to bring the 2E2u anion
state of benzene into agreement with the experimental value.
For instance, in B3LYP/6-31+G(d)+Rp1 calculations, b is 0.72.

TABLE 1: Calculateda and Correctedb AEs (eV) of Benzene, Pyridine, Phenol, and Fluorobenzene via S-KB Approach

S-KBc ESKTe

6-31+G(d)+Rp1 6-31+G(d)+ R(p1+p2) aug-cc-pvdz+Rp3 XRd 6-31+G(d)+Rp1

compd orbital B3LYP PBEPBE B3LYP PBEPBE B3LYP PBEPBE B HF Exptf,g

benzene b2g 5.78 5.95 5.82 5.92 5.62 5.50 5.62 6.61
(5.06) (4.98) (5.11) (4.92) (5.03) (4.85) (4.92) (4.66) 4.82

e2u 1.84 2.09 1.83 2.12 1.71 1.77 1.85 3.07
(1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) (1.12) 1.12

pyridine 4b1 5.71 5.71 5.78 5.70 5.59 5.59 5.51 6.10
(4.99) (4.74) (5.07) (4.70) (5.00) (4.94) (4.81) (4.15) 4.58

2a2 1.81 2.00 1.80 2.00 1.74 1.94 1.66 2.95
(1.09) (1.03) (1.09) (1.00) (1.15) (1.29) (0.96) (1.00) 1.20

3b1 1.46 1.65 1.42 1.64 1.38 1.59 1.14 2.43
(0.74) (0.68) (0.71) (0.64) (0.79) (0.94) (0.44) (0.48) 0.62

phenol 5b1 6.26 5.94 6.40 6.15 5.97 5.66 5.85 6.49
(5.54) (4.97) (5.69) (5.15) (5.38) (5.01) (5.15) (4.54) 4.92

4b1 2.12 2.20 2.10 2.19 1.98 2.07 2.06 3.70
(1.40) (1.23) (1.39) (1.19) (1.39) (1.42) (1.36) (1.75) 1.73

2a2 1.82 1.85 1.78 1.84 1.68 1.72 1.63 2.96
(1.10) (0.88) (1.07) (0.84) (1.09) (1.07) (0.93) (1.01) 1.01

fluorobenzene 5b1 5.72 5.65 5.87 5.60 5.49 5.42 5.97 6.41
(5.00) (4.68) (5.16) (4.60) (4.90) (4.77) (5.27) (4.46) 4.80

4b1 1.81 1.88 1.80 1.86 1.70 1.78 2.25 3.05
(1.09) (0.91) (1.09) (0.86) (1.11) (1.13) (1.55) (1.10) 1.48

2a2 1.50 1.52 1.46 1.53 1.38 1.45 1.52 2.59
(0.78) (0.55) (0.75) (0.53) (0.79) (0.80) (0.82) (0.64) 0.87

dh/eV 0.79 0.84 0.81 0.85 0.64 0.67 0.72 1.75

a The energies of the HOMO (εHOMO) in eq 5 are calculated for each value of R even though the εHOMOvalues do not change very much.
b The corrected values (shown in parentheses) were obtained by subtracting the amount needed to bring the calculated AEs into agreement with
experimental values for the 2E2u anion state of benzene. c Present study. d From ref 28. e From ref 29. f The experimental AEs of benzene and
fluorobenzene are obtained from refs 46 and 47, respectively. The values for pyridine and phenol are from ref 45. g The error in these values is
within (0.1 eV. (refs 28, 48). h d denotes the mean error relative to experimental data.

TABLE 2: Calculated and Correcteda AEs (eV) of Benzene,
Pyridine, Phenol, and Fluorobenzene via KT Approach

6-31+G(d) aug-cc-pvdz

compd orbital B3LYP PBEPBE B3LYP PBEPBE

benzene b2g 3.48 2.68 3.33 2.53
(4.97) (4.88) (4.93) (4.84)

e2u -0.37 -1.08 -0.48 -1.19
(1.12) (1.12) (1.12) (1.12)

pyridine 4b1 1.54 1.25 1.30 1.04
(3.03) (3.45) (2.90) (3.35)

2a2 -0.69 -1.43 -0.76 -1.50
(0.80) (0.77) (0.84) (0.81)

3b1 -1.04 -1.77 -1.11 -1.85
(0.45) (0.43) (0.49) (0.46)

phenol 5b1 1.91 1.58 1.63 1.33
(3.40) (3.78) (3.23) (3.64)

4b1 0.05 -0.64 -0.09 -0.77
(1.54) (1.56) (1.51) (1.54)

2a2 -0.30 -0.99 -0.43 -1.11
(1.19) (1.21) (1.17) (1.20)

fluorobenzene 5b1 1.68 1.37 1.43 1.15
(3.17) (3.57) (3.03) (3.46)

4b1 -0.40 -1.09 -0.49 -1.17
(1.09) (1.11) (1.11) (1.14)

2a2 -0.72 -1.41 -0.81 -1.49
(0.77) (0.79) (0.79) (0.82)

db/eV 2.00 2.61 2.15 2.74

a The corrected values (shown in parentheses) were obtained by
subtracting the amount needed to bring the calculated AEs into
agreement with experimental values for the 2E2u anion state of
benzene. b d denotes the mean error relative to experimental data.
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First, we discuss the results obtained from the B3LYP
method. Table 1 shows that the AEs obtained from the
6-31+G(d)+Rp1 and 6-31+G(d)+R(p1+p2) basis sets are close
to each other. When the basis set is sufficient to span the space,
there is almost no change in the AEs results. The inclusion of
the diffuse p2 function proves to be relatively unimportant. The
mean errors for AEs are 0.79 and 0.81 eV for the
6-31+G(d)+Rp1 and 6-31+G(d)+R(p1+p2) basis sets, respec-
tively. When the larger aug-cc-pvdz+Rp3 basis set is used, the
AEs obtained are closer to experimental values. The mean error
for AEs relative to the experimental data is reduced to 0.64
eV. However, the mean error is about 1.75 eV when the
Hartree-Fock exponent-stabilized Koopmans’ theorem (ESKT)
method29 is used. In Table 2, the mean errors for AEs are 2.00
and 2.15 eV for the 6-31+G(d) and aug-cc-pvdz basis sets,
respectively. For the third anion state (which falls in the 4-5
eV range) of the substituted benzenes, the mean error is around
3.18 eV. According to Tables 1 and 2, the S-KB approach yields
an improvement in the prediction of the absolute energies of
π* states over KT and ESKT approaches.

The 2E2u anion of benzene splits into 2A2 and the first 2B1 π*
state in the substituted benzenes. When using the S-KB B3LYP/
aug-cc-pvdz+Rp3 method, the error for 2E2u/2B2 g splitting of
benzene is 0.21 eV, and the average error for the 2A2/first 2B1

and 2A2/second 2B1 splittings of substituted benzenes is 0.29
eV. According to Table 2, none of the KT calculations account
quantitatively for the relative AEs between the 2A2 and second
2B1 anion states. The average error for the 2A2/second 2B1

splittings of substituted benzenes is 1.63 eV when using the
aug-cc-pvdz basis set. Hence, Tables 1 and 2 demonstrate that
the S-KB approach generates more accurate relative AEs than
those of the KT. The inherent experimental errors for the ETS
structures for the 2B2g state of benzene, the third anion states of
the substituted benzenes, and the second anion states of pyridine
and fluorobenzene could be as large as 0.1 eV. The errors
associated with determination of the resonance energies from
the stabilization graphs could also be as large as 0.1 eV.28,48

Consequently, the S-KB approach can yield reasonable predic-
tions of the relative energies of π* states when using the flexible
sizes of basis sets.

Next, we compare the results obtained from the B3LYP and
PBEPBE methods. For all the molecules, the εHOMO

PBEPBE values lie
above εHOMO

B3LYP. All AEPBEPBE values lie above AEB3LYP values
except for the 2B2g state of benzene and the third anion states
of the substituted benzenes. As shown in Table 1, the mean
errors for AEs obtained from the PBEPBE method are slightly
larger than those obtained from the B3LYP method (∼0.04 eV).
Similarly, for all the molecules, the εVMO

PBEPBE values lie below
εVMO

B3LYP. Hence, the mean errors for AEs obtained from the
PBEPBE method (2.61 and 2.74 eV) are larger than those
obtained from the B3LYP method (2.00 and 2.15 eV) when
using the KT approach (Table 2). As to the relative AEs, both
S-KBPBEPBE and ESKT approaches yield better results than the
S-KBB3LYP, as indicated in Table 1. When using the PBEPBE/
aug-cc-pvdz+Rp3 method, the error for 2E2u/2B2g splitting of
benzene is 0.03 eV, and the average error for the 2A2/first 2B1

and 2A2/second 2B1 splittings of substituted benzenes is 0.20
eV. The error for 2E2u/2B2g splitting of benzene and the average
error for the 2A2/first 2B1 and 2A2/second 2B1 splittings of
substituted benzenes are both 0.16 eV when the ESKT method
is employed. To sum up, the B3LYP method generally yields
slightly better absolute AEs, yet slightly worse relative AEs as
compared to the PBEPBE method. One possible reason for this

discrepancy is due to the different Coulomb contributions at
large electron-molecule distance between these two methods.

According to Table 1, the AEs of S-KB/aug-cc-pvdz+Rp3

are close to those obtained from the multiple scattering XR self-
consistent-field (MS-XR-SCF) method using basis set B of
similar size and with similar virial ratio.28 The XR theory can
be regarded as a special case of DFT. In the XR/stabilization
method, the AEs are calculated by Slater’s transition state
method44 with half an electron added to an empty orbital.
However, the success of the XR calculations for the series of
substituted benzenes is due in part to the fact that σ/π orbital
mixing is not important. One main drawback in multiple-
scattering XR method is that it does not treat the σ and π orbitals
on an equal footing when using the muffin-tin approximation
(MTA). For systems in which σ/π mixing is important, the XR
method may generate unreliable results for relative AEs.
Moreover, the EAs obtained from the XR method are also found
to be quite sensitive to the sphere overlap used for MTA. The
modern DFT method has been used widely and proved to be
more successful than the XR method in many systems.
Therefore, the S-KB method is more useful in studying the AEs
of temporary anion states than the XR/stabilization method.

4. Conclusion

The energies of π* anion states obtained from the S-KB
method have been systematically studied in benzene and
substituted benzenes by using the DFT method. The present
investigation has demonstrated that the S-KB method is able to
yield an improvement in predicting the absolute energies of π*
states for substituted benzenes over KT and ESKT approaches.
The key factors to the superiority of our approach are (1) the
adoption of a stabilization method that can allow us to
distinguish the π* virtual orbitals coming from either the π*
resonance or ODC solutions and (2) the use of KB approxima-
tion instead of KT. It is believed that the S-KB method should
be very useful in determining the energies of temporary anion
states for aromatic systems.
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